QUESTION In the following equilibrium: $HCO_3^{-}(aq) + H_2O(l) + H_2CO_3(aq) + OH^{-}(aq)$ - A) HCO_3 is an acid and H_2CO_3 is its conjugate base. - B) H₂O is an acid and OH is its conjugate base. - C) HCO₃ is an acid and OH is its conjugate base. - D) H₂O is an acid and H₂CO₃ is its conjugate base. - E) H₂O is an acid and HCO₃ is its conjugate base. $H_2CO_3(aq) / HCO_3^{-1}(aq) / CO_3^{-2}(aq)$ ## Two VERY IMPORTANT Buffer Systems "Bicarbonate" $CO_2(g) + H_2O(l) \leftrightarrows HCO_3^{-1}(aq) + H^{+1}(aq) \leftrightarrows CO_3^{-2}(aq) + H^{+1}(aq)$ - Blood: a human's blood serum volume is relatively small, 4-6 Liters with a narrow pH range, pH = 7.35 – 7.45; pH is maintained through buffering (homeostasis) Have you ever had respiratory alkalosis during an exam? - 2. Oceans: an extraordinarily large volume of a "salt water" solution with a pH \sim 8.1; maintained through buffering ## **EQUILIBRIUM** CO₂ & Oceanic Bicarbonate Buffering $CO_2(g) + H_2O(l) \leftrightarrows HCO_3^{-1}(aq) + H^{+1}(aq) \leftrightarrows CO_3^{-2}(aq) + H^{+1}(aq)$ Oceans: pH ~ 8.1 and falling $\label{local-poly-lo$