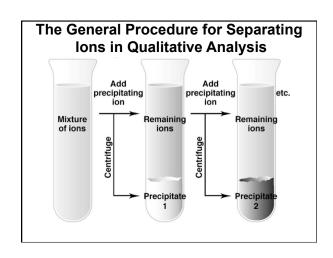
Selective Precipitation

Qualitative Analysis: Separating & Identifying Metal Ions II

Precipitation and Separation of Ions

CuS(s) $Cu^{2+}(aq) + S^{2-}(aq)$

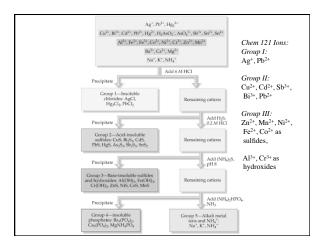

- At any instant in time, $Q = [Cu^{2+}][S^{2-}]$.
 - ❖ If $Q > K_{sp}$, precipitation occurs until $Q = K_{sp}$.
 - ❖ If $Q = K_{sp}$, equilibrium exists.
 - ❖ If $Q < K_{sp}$, solid dissolves until $Q = K_{sp}$.
- Based on solubilities, ions can be selectively removed from solutions.
- Consider a mixture of Zn²⁺(aq) and Cu²⁺(aq). CuS ($K_{sp} = 6 \times 10^{-37}$) is less soluble than ZnS ($K_{sp} = 2 \times 10^{-25}$), CuS will be removed from solution before ZnS.

Precipitation and Separation of Ions

- As H₂S is added to the green solution, black CuS forms in a colorless solution of Zn²⁺(aq).
- When more H₂S is added, a second precipitate of white ZnS forms.

Selective Precipitation of Ions

- Ions can be separated from each other based on their salt solubilities.
- Example: if HCl is added to a solution containing Ag⁺ and Cu²⁺, the silver precipitates (K_{sp} for AgCl is 1.8×10^{-10}) while the Cu²⁺ remains in solution.
- Removal of one metal ion from a solution is called *selective precipitation*.


QUESTION #K.7

To separate a solution containing 0.000 10 M silver and 0.10 M lead ions, as done in some qualitative analysis separation schemes, a source of I⁻ may be slowly added to the mixture of ions. Which will precipitate first: AgI ($K_{\rm sp}=1.5\times10^{-16}$) or PbI₂ ($K_{\rm sp}=1.4\times10^{-8}$)? Also, what would be the concentration of I⁻ necessary to see that first precipitation?

A. AgI; [I⁻] would be 1.5×10^{-12} M B. AgI; [I^{-]} would be 1.4×10^{-4} M

C. PbI_2 ; [I⁻] would be 1.4×10^{-7} M

D. PbI_2 ; [I⁻] would be 1.4×10^{-6} M

Separation into Ion Groups

Ion Group 1: Insoluble chlorides

Ag+, Pb²⁺ // Hg₂²⁺

Ion Group 2: Acid-insoluble sulfides

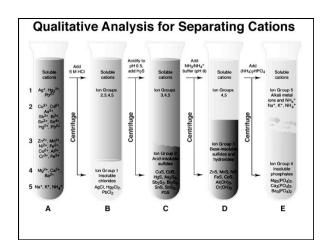
Cu²⁺, Cd²⁺, Sb³⁺, Bi³⁺, Pb²⁺ // Hg²⁺, As³⁺, Sn²⁺, Sn⁴⁺

Ion Group 3: Base-insoluble sulfides and hydroxides

 Zn^{2+} , Mn^{2+} , Ni^{2+} , Fe^{2+} , Co^{2+} as sulfides, and Al^{3+} , Cr^{3+} as hydroxides

Ion Group 4: Insoluble phosphates

Mg²⁺, Ca²⁺, Ba²⁺

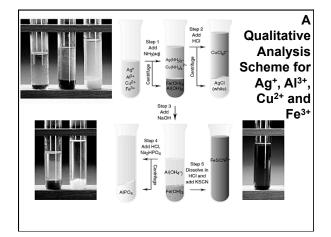

Ion Group 5: Alkali metal and ammonium ions

 Na^+, K^+, NH_4^+

QUESTION Q.1.

In the qualitative analysis scheme for metal ions, how are the Analytical Group II cations separated from the cations of Analytical Groups III?

- by addition of HCl, forming insoluble metal chlorides
- B) by addition of H₂SO₄, forming insoluble metal sulfates
- C) by addition of H₂S in acidic solution, forming insoluble metal sulfides
- D) by addition of H_2S in basic solution, forming insoluble metal sulfides or hydroxides
- E) by addition of (NH₄)₂CO₃ or (NH₄)₃PO₄, forming insoluble metal carbonates or phosphates



QUESTION Q.2.

When a mixture containing cations of Analytical Groups I-III is treated with H₂S in acidic solution, which cations are expected to precipitate?

A)Analytical Group I only

- B)Analytical Group II only
 C) Analytical Group III only
- D) Analytical Groups I and II E) Analytical Groups II and III

QUESTION Q.3.

The cation M²⁺ reacts with NH₃ to form a series of complex ions as follows:

 $M^{2+} + NH_3 \rightleftharpoons M(NH_3)^{2+}$

 $K_1 = 10^2$

 $M(NH_3)^{2+} + NH_3 \Longrightarrow M(NH_3)_2^{2+}$

 $K_2 = 10^3$

 $M(NH_3)_2^{2+} + NH_3 \Longrightarrow M(NH_3)_3^{2+}$

 $K_3 = 10^2$

A 1.0 x 10^{-3} mol sample of M(NO₃)₂ is added to 1.0 L of 15.0 $M \, \text{NH}_3 \, (K_b = 1.8 \, ^{\circ} \, 10^{-5})$. Choose the dominant species in this solution:

A) M^{2+}

B) M(NH₃)²⁺

C) M(NH₃)₂²⁺

D) M(NH₃)₃²⁺

E) M(NO₃)₂