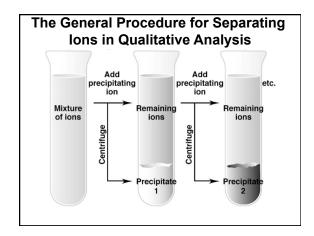
Selective Precipitation Qualitative Analysis: Separating & Identifying Metal Ions II

Precipitation and Separation of Ions

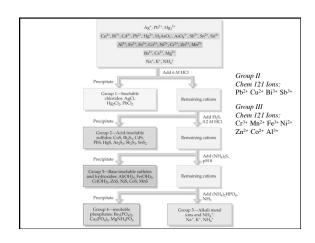
 $CuS(s) \longrightarrow Cu^{2+}(aq) + S^{2-}(aq)$


- At any instant in time, $Q = [Cu^{2+}][S^{2-}].$
 - ❖ If $Q > K_{sp}$, precipitation occurs until $Q = K_{sp}$.
 - ❖ If $Q = K_{sp}$, equilibrium exists.
 - ❖ If $Q < K_{sp}$, solid dissolves until $Q = K_{sp}$.
- Based on solubilities, ions can be selectively removed from solutions.
- Consider a mixture of Zn²⁺(aq) and Cu²⁺(aq). CuS ($K_{sp} = 6 \times 10^{-37}$) is less soluble than ZnS ($K_{sp} = 2 \times 10^{-25}$), CuS will be removed from solution before ZnS.

Precipitation and Separation of Ions

- As H₂S is added to the green solution, black CuS forms in a colorless solution of Zn²⁺(aq).
- When more H₂S is added, a second precipitate of white ZnS forms.

Selective Precipitation of Ions


- Ions can be separated from each other based on their salt solubilities.
- Example: if HCl is added to a solution containing Pb⁺² and Cu²⁺, the lead precipitates (K_{sp} for PbCl₂ is 1.6 × 10⁻⁵) while the Cu²⁺ remains in solution.
- Removal of one metal ion from a solution is called *selective precipitation*.

QUESTION

To separate a solution containing 0.000 10 M silver and 0.10 M lead ions, as done in some qualitative analysis separation schemes, a source of Γ may be slowly added to the mixture of ions. Which will precipitate first: AgI ($K_{sp}=1.5\times 10^{-16}$) or PbI $_2$ ($K_{sp}=1.4\times 10^{-8}$)? Also, what would be the concentration of Γ necessary to see that first precipitation?

- A. AgI; [I⁻] would be 1.5×10^{-12} M
- B. AgI; [I^{-]} would be $1.4 \times 10^{-4} \, M$
- C. PbI_2 ; [I⁻] would be 1.4×10^{-7} M
- D. PbI₂; [I⁻] would be 1.4×10^{-6} M

Chem 121: Possible Ions

Ion Group 1: Insoluble chlorides

Ag+, Pb2+

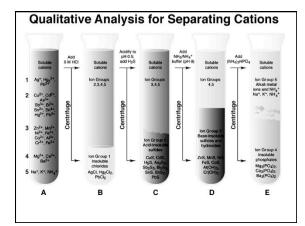
Ion Group 2: Acid-insoluble sulfides

 Cu^{2+} , Sb^{3+} , Bi^{3+} , Pb^{2+}

Ion Group 3: Base-insoluble sulfides and hydroxides

Zn²⁺, Mn²⁺, Ni²⁺, Fe²⁺, Co²⁺ as sulfides,

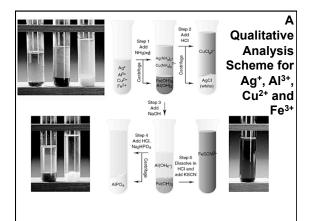
and Al^{3+} , Cr^{3+} as hydroxides (Cr^{3+} Mn^{2+} Fe^{3+} Ni^{2+} Zn^{2+} Co^{2+} Al^{3+})


Ion Group 4: Insoluble phosphates

Ion Group 5: Alkali metal and ammonium ions

QUESTION

In the qualitative analysis scheme for metal ions, how are the Analytical Group II cations separated from the cations of Analytical Groups III?


- by addition of HCl, forming insoluble metal chlorides
- by addition of H₂SO₄, forming insoluble metal sulfates B)
- by addition of H₂S in acidic solution, forming insoluble metal sulfides
- D) by addition of H₂S in basic solution, forming insoluble metal sulfides or hydroxides
- by addition of (NH₄)₂CO₃ or (NH₄)₃PO₄, forming E) insoluble metal carbonates or phosphates

QUESTION

When a mixture containing cations of Analytical Groups I-III is treated with H₂S in acidic solution, which cations are expected to precipitate?

- A) Analytical Group I only
- B) Analytical Group II only
- C) Analytical Group III only
- D) Analytical Groups I and II
- E) Analytical Groups II and III

QUESTION

The cation M2+ reacts with NH3 to form a series of complex ions as follows:

$$M^{2+} + NH_3 \rightleftharpoons M(NH_3)^{2+}$$

$$K_1 = 10^2$$

$$M(NH_3)^{2+} + NH_3 \Longrightarrow M(NH_3)_2^{2+}$$

$$K_2 = 10^3$$

$$M(NH_3)_2^{2+} + NH_3 \Longrightarrow M(NH_3)_3^{2+}$$

$$K_3 = 10^2$$

A 1.0 x 10^{-3} mol sample of M(NO₃)₂ is added to 1.0 L of 15.0 M NH₃ (K_b = 1.8 $^{'}$ 10⁻⁵). Choose the dominant species in this solution: