

Chem 121: General Course Topics

- _ lonic equilibria
- _ Thermodynamics
- _ Electrochemistry
- _ Molecular orbital theory
- _ Coordination chemistry
- _ Introduction to organic chemistry
- _ Spectroscopy visible, UV, IR, NMR
- _ Chemical kinetics
- _ Introduction to nuclear chemistry
- _ Qualitative analysis
- _ Quantitative analysis

Chem 121 Topics: Part 1

Ionic equilibria

- Acid base review
- · Buffers and titration curves
- Solubility product
- · Selective precipitation
- · Dissolving precipitates
- · Formation constants for complex ions
- Qualitative analysis (Laboratory)
 - Separation & Identification of selected ions
 - Application of the principles of ionic equilibria, oxidation-reduction, and complex ion formation

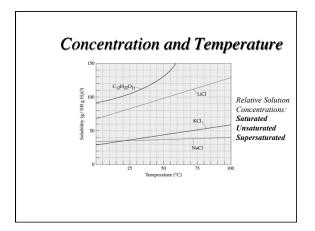
Chem 121: General Chemistry II [Review of the Essential Principles from General Chemistry I]

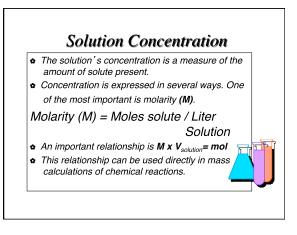
© 0

Chem 121: Essentials

General Review Topics (Part 1)

(Each requires a high degree of personal proficiency).


Nomenclature (Polyatomic lons), Reactions, Stoichiometry, Limiting reagent, Net Ionic Equations, Aqueous Solutions/ Solubility, Acids/ Bases, Equilibria

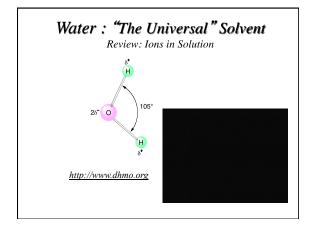

Review: (Workshops/Worksheets)

1) Ions in Solution; 2) Acids-Bases, Equilibria

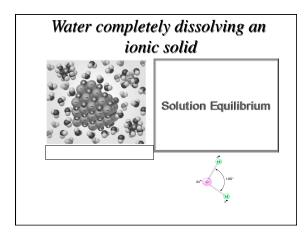
Solutions

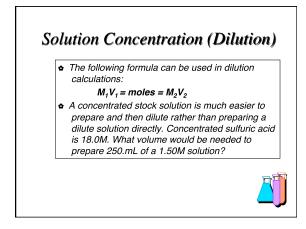
- Homogeneous solutions are comprised of solute(s), the substance(s) dissolved, [The lesser amount of the component(s) in the mixture], and
- solvent, the substance present in the largest amount.
- Solutions with less solute dissolved than is physically possible are referred to as "unsaturated". Those with a maximum amount of solute are "saturated".
- Occasionally there are extraordinary solutions that are "supersaturated" with more solute than normal.

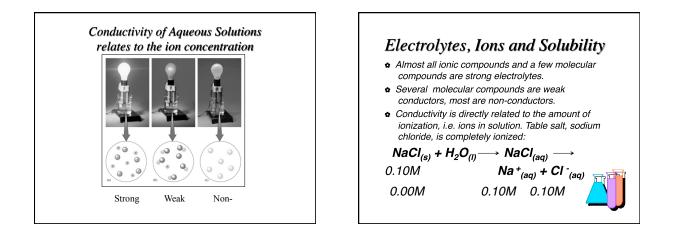
How many moles of NaCl are contained in 350. mL of a 0.250 M solution of sodium chloride?

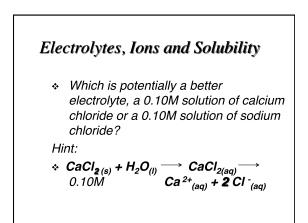

A. 0.250 mol B. 0.350 mol C. 0.700 mol D. 87.5 mmol

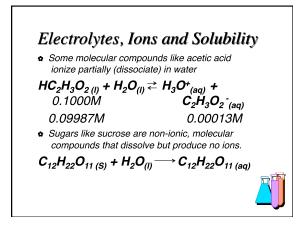

E. None of these

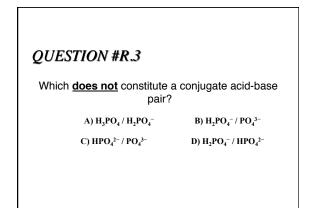

QUESTION #R.2

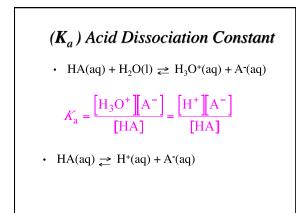

How many grams of NaCl are contained in 350. mL of a 0.250 M solution of sodium chloride?

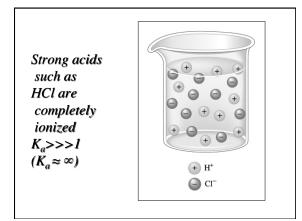

A. 41.7 g B. 5.11 g C. 14.6 g D. 87.5 g E. None of these

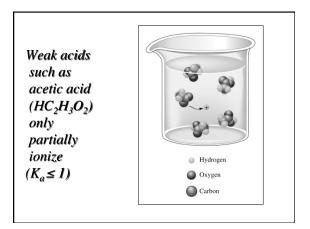











- conjugate acid: formed when the proton is transferred to the base.
- conjugate base: everything that remains of the acid molecule after a proton is lost.

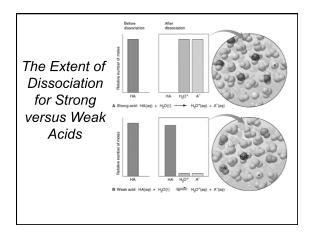
Strengths		•	HCI	BASE CI	1	
of Conjugate		Change	H ₂ SO ₄	HSO4	Negligible	
Acid-Base		Strong	HNO ₃	NO ₃		-
			H ₃ O ⁺	H ₂ O)	
Pairs			HSO4	SO42-		
			H ₂ SO ₃	HSO3		T
	王		H ₃ PO ₄	H ₂ PO ₄		Ē
	g		HF	F ⁻		ž
	STRENGTH		CH3COOH			STRENGTH
	E		H ₂ CO ₃	HCO3	Weak	
	0	Weak		HS ⁻		BASE
	ACID		HSO3	SO32-		BA
			H ₂ PO ₄ ⁻	HPO42-		
			NH4 ⁺	NH ₃		-
			HCO3	CO32-		
			HPO42-	PO43-	J	
			H ₂ O	OH-		
		Negligible	HS ⁻	S ²⁻	Strong	
		3 9.010	он⁻	O ²⁻		\checkmark

Which of the following is a strong acid?

A. HF

- B. KOH
- C. HCIO₄
- D. HCIO
- E. HBrO

QUESTION #R.5


Nitric acid, HNO_3 , is considered to be a strong acid whereas nitrous acid, HNO_2 , is considered to be a weak acid. Which of the statements here is fully correct?

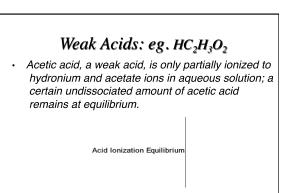
A.Nitric acid has an aqueous equilibrium that lies far to the right and $\rm NO_3^-$ is the conjugate base, which is neutral.

B.Nitric acid has a stronger conjugate base than nitrous acid.

C.The dissociation of nitrous acid compared to an equal concentration of nitric produces more H⁺.

D. The equilibrium of nitrous acid lies far to the left and the conjugate base is weaker than the conjugate base of nitric acid.

QUESTION #R.6


What are the **major species** present in an aqueous solution of 1.0 M CH₃COOH?

I) CH₃COOH II) H₂O III) H₃O⁺ IV) CH₃COO⁻ V) OH⁻

A) I and II B) II, III, and IV

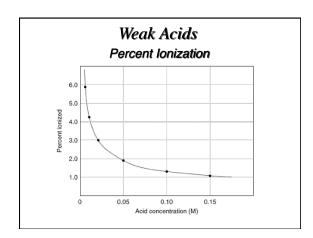
C) I, II, III, and IV D) I, II, III, IV, and V

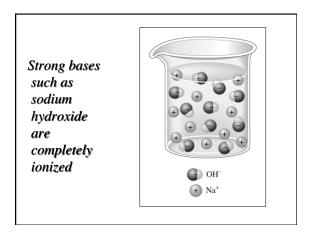
Acid	Some Conjugate Acid–Bas K _a	Base	Кh
HNO ₃ HF HC ₂ H ₃ O ₂ H ₂ CO ₃ NH ₄ ⁺ HCO ₃ ⁻ OH ⁻	$\begin{array}{l} ({\rm Strong\ acid}) \\ 6.8 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 4.3 \times 10^{-7} \\ 5.6 \times 10^{-10} \\ 5.6 \times 10^{-11} \\ ({\rm Negligible\ acidity}) \end{array}$	NO3 ⁻ F ⁻ C2H3O2 ⁻ HCO3 ⁻ NH3 CO3 ² - O ² -	$\begin{array}{l} (\text{Negligible basicity} \\ 1.5 \times 10^{-11} \\ 5.6 \times 10^{-10} \\ 2.3 \times 10^{-8} \\ 1.8 \times 10^{-5} \\ 1.8 \times 10^{-4} \\ (\text{Strong base}) \end{array}$
NH4 ⁺ HCO3 ⁻	5.6×10^{-10} 5.6×10^{-11} (Negligible acidity)	$\frac{HCO_3}{NH_3}$ CO_3^{2-} CO_3^{2-} $K_b = 2$	1.8×10^{-5} 1.8×10^{-4}

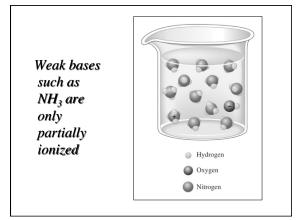
Values of K_a for Some Common Monoprotic Acids					
Formula	Name	Value of K_{a}^{*}			
HSO ₄ ⁻	Hydrogen sulfate ion	1.2×10^{-2}	Ŷ		
HClO ₂	Chlorous acid	1.2×10^{-2}			
HC ₂ H ₂ ClO ₂	Monochloracetic acid	1.35×10^{-3}	Increasing acid strength		
HF	Hydrofluoric acid	$7.2 imes10^{-4}$	trei		
HNO ₂	Nitrous acid	$4.0 imes 10^{-4}$			
$HC_2H_3O_2$	Acetic acid	1.8×10^{-5}	jue i		
$[Al(H_2O)_6]^{3+}$	Hydrated aluminum(III) ion	1.4×10^{-5}	2		
HOCI	Hypochlorous acid	3.5×10^{-8}	asi		
HCN	Hydrocyanic acid	$6.2 imes 10^{-10}$	J		
NH4 ⁺	Ammonium ion	$5.6 imes 10^{-10}$	1-		
HOC ₆ H ₅	Phenol	$1.6 imes 10^{-10}$			

Percent Ionization

- Percent ionization is a way to assess relative acid strengths.
- For the reaction


$$HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$$

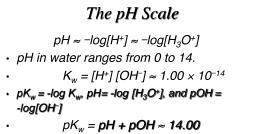

% ionization =
$$\frac{[H^+]_{eqm}}{[HA]_0} \times 100$$


• Percent ionization relates the $H_3O^+(aq)$ equilibrium concentration, $[H^+]_{eqm}$, to the initial HA(aq) concentration, $[HA]_0$.

Weak Acids

- The higher percent ionization, the stronger the acid.
- Percent ionization of a weak acid decreases as the molarity of the solution increases.
- For acetic acid, 0.05 M solution is 2.0 % ionized whereas a 0.15 M solution is 1.0 % ionized.

Which of the following is *not* a strong base?

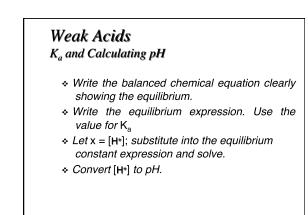

- A. Ca(OH)₂
- B. KOH
- C. CH₃NH₂
- E. Sr(OH)₂

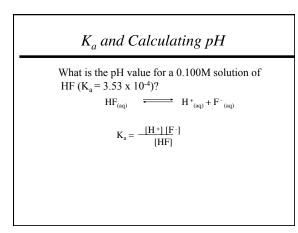
QUESTION #R.8

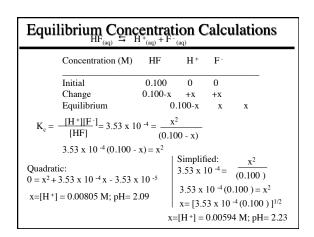
Aniline, $C_6H_5NH_2$, was isolated in the 1800s and began immediate use in the dye industry. What would be the formula of the conjugate acid of this base?

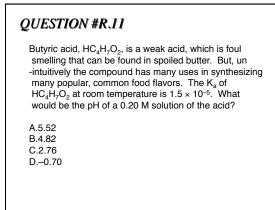
 $\begin{array}{l} {\rm A.C_6H_5NH_2^+} \\ {\rm B.C_6H_5NH_3^+} \\ {\rm C.C_6H_5NH^-} \\ {\rm D.C_6H_5NH^+} \end{array}$

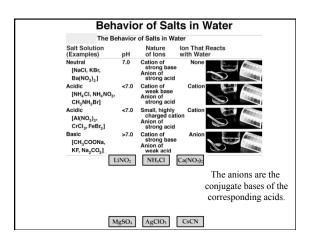
Formula	Name	Value of K _a *		QUESTION
HSO4	Hydrogen sulfate ion	1.2×10^{-2}	1	~
HClO ₂	Chlorous acid	1.2×10^{-2}	-	#R.9
HC ₂ H ₂ ClO ₂	Monochloracetic acid	1.35×10^{-3}	Increasing acid strength	
HF	Hydrofluoric acid	7.2×10^{-4}	tre	
HNO ₅	Nitrous acid	4.0×10^{-4}	- P	
HC ₂ H ₃ O ₂	Acetic acid	1.8×10^{-5}	aci	
[Al(H ₂ O) ₆] ³⁺	Hydrated aluminum(III) ion	1.4×10^{-5}	20	
HOCI	Hypochlorous acid	3.5×10^{-8}	asi	
HCN	Hydrocyanic acid	6.2×10^{-10}	e l	
NH4 ⁺	Ammonium ion	5.6×10^{-10}	-	
HOC ₆ H ₅	Phenol	1.6×10^{-10}		which of
Use in the fo		1.6×10^{-10} ble to determ have the <u>w</u>	nine v	<u>st</u>
Use in the fo conju	Prenet formation on this tal llowing bases would gate acid: $OC_6H_5^{-}$; $C_2H_3O_2$ H_5^{-}	1.6×10^{-10} ble to determ have the <u>w</u>	nine veake	<u>st</u>
Use in the fo conju	Prenet formation on this tal llowing bases would gate acid: $OC_6H_5^{-}$; $C_2H_3O_2$ H_5^{-}	1.6×10^{-10} ble to determ have the <u>w</u>	nine veake	<u>st</u>
Use ir the fo conju	Plenol formation on this tal llowing bases would gate acid: $OC_6H_5^-$; $C_2H_3O_2$ H_5^- $_{3}O_2^-$	1.6×10^{-10} ble to determ have the <u>w</u>	nine veake	<u>st</u>
Use ir the fo conju A.OC ₆ B.C ₂ H	Plenol formation on this tal llowing bases would gate acid: $OC_6H_5^-$; $C_2H_3O_2$ H_5^- $_{3}O_2^-$	1.6×10^{-10} ble to determ have the <u>w</u>	nine veake	<u>st</u>

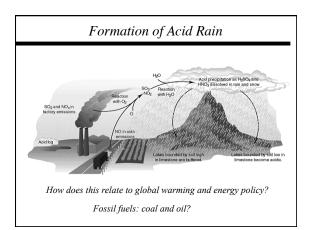


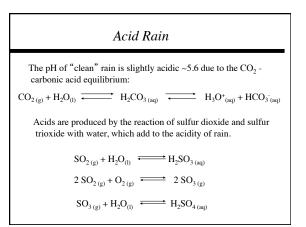

- As pH rises, pOH falls (sum = 14.00).
- There are no theoretical limits on the
- values of pH or pOH. (e.g. pH of 2.0 M HCl is -0.301)


The			[H ₃ O ⁺]	pН	[OH-]	рОН
The		_	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	C		1.0×10^{-14}	14.00	1.0×10^{0}	0.00
Among	ASI		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
H₃O+].	MORE BASIC	BASIC	1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
ρΗ.	Ë		1.0×10^{-11}	11.00	1.0×10^{-3}	3.00
ŐĤ⁻1.	M		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
			1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
nd pOH			1.0 × 10 ⁻⁸	8.00	1.0×10^{-6}	6.00
	\vdash	NEUTRA	L 1.0 × 10 ⁻⁷	7.00	1.0×10^{-7}	7.00
			1.0 × 10 ⁻⁶	6.00	1.0×10 ⁻⁸	8.00
	C		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	MORE ACIDIC		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC		1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
	쁥	ACIDIC	1.0×10^{-2}	2.00	1.0×10^{-12}	12.00
	ō		1.0×10^{-1}	1.00	1.0×10^{-13}	13.00
	2		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
		7	1.0×10^{1}	-1.00	1.0×10^{-15}	15.00


In an EPA pond water sample at 19.5 °C, the [H+] was instrumentally determined to be 1.2×10^{-6} M. What is the [OH⁻] in the sample? Is the sample acidic, basic, or neutral?


A.1.2 × 10^{-20} M; acidic B.1.2 × 10^{-20} M; basic C.8.3 × 10^{-9} M; basic D.8.3 × 10^{-9} M; acidic

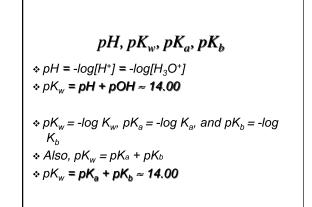

QUESTI	ION #R	2.12	
same temper	ature so that		rate solutions at the ons were all equal. highest pH.
Na	Cl; NH ₄ N	O ₃ ; Ca(C ₂ H ₃ O ₂	$_{2})_{2};$ AlCl ₃
		f_{b} for NH ₃ = 1.8 × a for Al(H ₂ O) ³⁺ =	
A. NaCl;	NH ₄ NO ₃ ;	Ca(C ₂ H ₃ O ₂) ₂ ;	AlCl ₃
B. AlCl ₃ ;	NaCl;	$NH_4NO_3;$	$Ca(C_2H_3O_2)_2$
C. AlCl ₃ ;	NH ₄ NO ₃ ;	NaCl;	$Ca(C_2H_3O_2)_2$
D. NH ₄ NO ₃	AlCl ₃ ;	NaCl	;
Ca(C ₂	$H_3O_2)_2$		
_			


Oxides + H₂O Acidic Oxides (Acid Anhydrides): O-X [Oxygen- nonmetal bond] is strong and covalent; form acids with water. SO₂, NO₂, CrO₃, CO₂ Basic Oxides (Basic Anhydrides):

• O-X [Oxygen- metal bond] bond is ionic, form bases with water.

K₂O, CaO

A naturally occuring example is the phenomenon of acid rain.

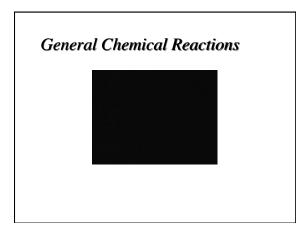


QUESTION #R.13

An environmental chemist obtained a sample of rainwater near Buffalo, N.Y. The [H⁺] was determined to be 3.5×10^{-6} M. What is the pH, pOH, and [OH⁻] of the solution?

$$\begin{split} A.pH &= 5.46 \ ; \ pOH = 8.54; \ [OH^-] = 7.0 \times 10^{-6} \ M \\ B.pH &= 5.46 \ ; \ pOH = 8.54; \ [OH^-] = 2.9 \times 10^{-9} \ M \\ C.pH &= 12.56 \ ; \ pOH = 1.44 \ ; \ [OH^-] = 3.6 \times 10^{-2} \ M \\ D.pH &= 8.54; \ pOH = 5.46; \ [OH^-] = 2.9 \times 10^{-9} \ M \end{split}$$

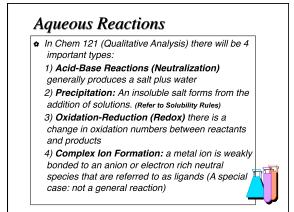
Two weak acids, HA and HB are placed in separate solutions so that their molarities are the same. Which, if either, would have the larger value for K_a if the pH of the HA solution were <u>lower</u> than the pH of the HB solution?


A.HA has the larger $K_{a.}$ B.HB has the larger $K_{a.}$ C.The K_{a} of HA = K_{a} of HB. D.More information is needed to answer the question. Aqueous Reactions

Aqueous Reactions & Solutions

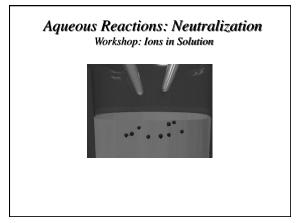
- Many reactions occur in a homogeneous liquid or gas phase which generally improves reaction rates.
- The prime medium for many inorganic reactions is water which serves as a solvent (the substance present in the larger amount), but does not react itself.
- The substance(s) dissolved in the solvent is (are) the solute(s). Together they comprise a solution. The reactants would be the solutes.
- Reaction solutions typically have less solute dissolved than is possible and are "unsaturated".
- There are many examples of aqueous reactions. As you saw in the naturally occuring example of acid rain.

Types of Chemical Reactions


- Combination (Synthesis)
- Decomposition
- Single Displacement
- Double Displacement (Metathesis: "Exchange Reactions)
- Combustion
- Others: Oxidation-Reduction, Neutralization, **Precipitation**, **Complexation**

Double Displacement "Metathesis": "Exchange Reactions"

$AB + CD \longrightarrow AD + CB$

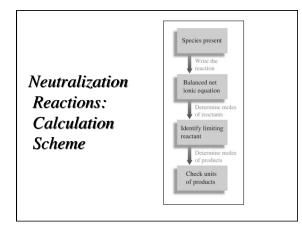

- Example:
 - A solution of sodium phosphate reacts with a solution of silver nitrate to produce aqueous sodium nitrate and a precipitate of silver phosphate.
 - Balanced equation: ?
 - What is another description for this type of reaction?

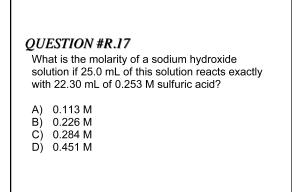
Some CO_2 gas is bubbled into water. Which of the following compounds would be suitable to now neutralize the CO_2 infused solution?

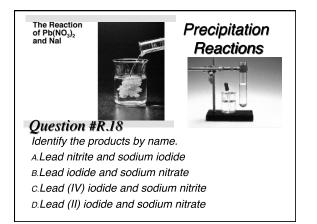
A. K₂O

- B. NaCl C. NH₄Br
- D. AICI₃

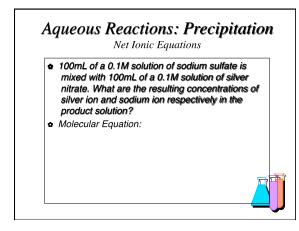
Aqueous Reactions: Neutralization Net Ionic Equations $HCI_{(aq)} + NaOH_{(aq)} \rightarrow NaCI_{(aq)} + H_2O_{(l)}$ $\cdot HCI_{(aq)} \longrightarrow H^+_{(aq)} + CI^-_{(aq)}$ $\begin{array}{c} \cdot \quad \textit{NaOH}_{(aq)} \longrightarrow \textit{Na}^{+}_{(aq)} + \textit{OH}_{(aq)} \\ \cdot \quad \textit{NaCI}_{(aq)} \longrightarrow \textit{Na}^{+}_{(aq)} + \textit{CI}_{(aq)} \end{array}$ $Na^{+}_{(aq)} + OH^{-}_{(aq)} + H^{+}_{(aq)} + CI^{-}_{(aq)}$ $Na^{+}_{(aq)} + Cl^{+}_{(aq)} + H_2O_{(l)}$ $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$

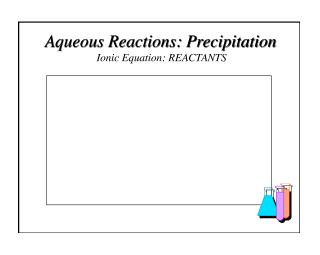

QUESTION #R.16

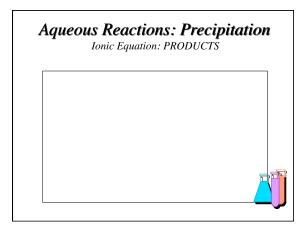

In the balanced molecular equation for the neutralization of sodium hydroxide with sulfuric acid, the products are:

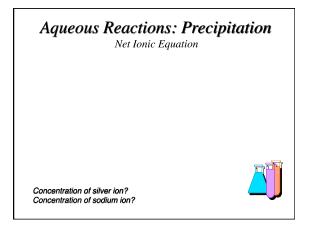

A) NaSO₄ + H₂O

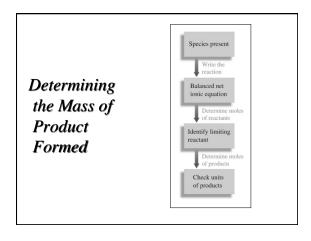
- B) $Na_2SO_4 + 2H_2O$
- C) $2NaSO_4 + H_2O$
- D) $Na_2S + 2H_2O$

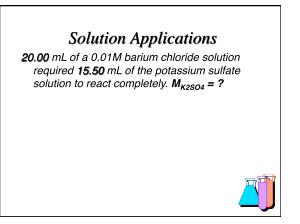

Aqueous Reactions (Calculations)

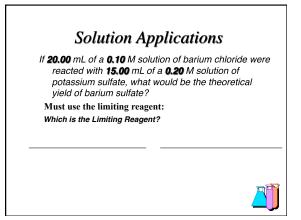







Soluble Ionic Compound	6	Important Exceptions		
Compounds containing	$\begin{array}{c} NO_{3}^{-} \\ C_{2}H_{3}O_{2}^{-} \\ CI^{-} \\ Br^{-} \\ I^{-} \\ SO_{4}^{2-} \end{array}$	None None Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Ag ⁺ , Hg ₂ ²⁺ , and Pb ²⁺ Compounds of Sr ²⁺ , Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺		
Insoluble Ionic Compoun	ds	Important Exceptions		
Compounds containing	S ²⁻ CO ₃ ²⁻ PO ₄ ³⁻ OH ⁻	Compounds of NH ₄ ⁺ , the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺ Compounds of NH ₄ ⁺ and the alkali metal cations Compounds of NH ₄ ⁺ and the alkali metal cations Compounds of the alkali metal cations, and Ca ²⁺ , Sr ²⁺ , and Ba ²⁺		





Solution Applications

How many grams of potassium chloride are produced?

Solution Applications

If **20.00** mL of a **0.10** M solution of barium chloride was reacted with **15.00** mL of a **0.20** M solution of potassium sulfate, what would be the theoretical yield of barium sulfate?

Must use the limiting reagent:

Aqueous Reactions

- In Chem 121 (Qualitative Analysis) there will be 4 important types: Acid-Base, Precipitation, Complexation, and Oxidation-Reduction
- The last two reaction types will be addressed in detail later.
- Oxidation-Reduction (Redox) there is a change in oxidation numbers between reactants and products (Chapter on Electrochemistry)
- 4) Complex Ion Formation: a metal ion is weakly bonded to an anion or electron rich neutral species that are referred to as ligands. (Chapter the chapter of constraints)

on the Chemistry of Coordination Compounds)