







Region of infrared that is most useful lies between 2.5-16  $\mu$ m (4000-625 cm<sup>-1</sup>)

depends on transitions between vibrational energy states

Stretching: higher energy / higher wave number (cm-1)

Bending: lower energy / lower wave number (cm<sup>-1</sup>)

A bond must have a dipole or an induced dipole in order to have an absorbance in the IR spectrum.

When the bond stretches, the increasing distance between the atoms increases the dipole moment. Therefore, the greater the dipole, the more intense the absorption. (i.e., The greater the molar extinction coefficient ( $\epsilon$ ) in Beer's law, A =  $\epsilon$ bc.

relative polarities relative intensities





## Analyzing Structure: Functions & Infrared Spectra

The molecular formula is a critical piece of information, which limits the functional possibilities.

The presence & absence of absorption bands must be considered in identifying a possible structure in IR spectroscopy. Empiricism is critical to successful identification.

**NOTE:** Bonds which lack dipole moments are not detected.



| Important IR Stretching Frequencies |                                |                    |  |
|-------------------------------------|--------------------------------|--------------------|--|
| Type of bond                        | Wavenumber (cm <sup>-1</sup> ) | Intensity          |  |
| C≡N                                 | 2260-2220                      | medium             |  |
| C≡C                                 | 2260-2100                      | medium to weak     |  |
| C=C                                 | 1680-1600                      | medium             |  |
| C=N                                 | 1650-1550                      | medium             |  |
| $\bigcirc$                          | ~1600 and ~1500-1430           | strong to weak     |  |
| C=0                                 | 1780-1650                      | strong             |  |
| с—о                                 | 1250-1050                      | strong             |  |
| C-N                                 | 1230-1020                      | medium             |  |
| O—H<br>(alcohol)                    | 3650-3200                      | strong, broad      |  |
| O—H<br>(carboxylic acid)            | 3300-2500                      | strong, very broad |  |
| N—H                                 | 3500-3300                      | medium, broad      |  |
| С—Н                                 | 3300-2700                      | medium             |  |





| Infrared Absorption Frequencies                                                  |                             |  |  |
|----------------------------------------------------------------------------------|-----------------------------|--|--|
| Structural unit                                                                  | Frequency, cm <sup>-1</sup> |  |  |
| Stretching vibrations (single bonds)                                             |                             |  |  |
| O—H (alcohols)                                                                   | 3200-3600                   |  |  |
| O—H (carboxylic acids)                                                           | 3000-3100                   |  |  |
| N—H                                                                              | 3350-3500                   |  |  |
| First examine the absorption bands in the vicinity of 4000-3000 $\mbox{cm}^{-1}$ |                             |  |  |





| Infrared Absorption Frequencies      |                             |  |
|--------------------------------------|-----------------------------|--|
| Structural unit                      | Frequency, cm <sup>-1</sup> |  |
| Stretching vibrations (single bonds) |                             |  |
| sp C—H                               | 3310-3320                   |  |
| sp² C—H                              | 3000-3100                   |  |
| sp³ C—H                              | 2850-2950                   |  |
| sp² C—O                              | 1200                        |  |
| sp <sup>3</sup> C—O                  | 1025-1200                   |  |

| Infrared Absorption Frequencies      |                             |  |
|--------------------------------------|-----------------------------|--|
| Structural unit                      | Frequency, cm <sup>-1</sup> |  |
| Stretching vibrations (single bonds) |                             |  |
| sp C—H                               | 3310-3320                   |  |
| sp <sup>2</sup> C—H                  | 3000-3100                   |  |
| sp <sup>3</sup> C—H                  | 2850-2950                   |  |
| sp <sup>2</sup> C—O                  | 1200                        |  |
| sp <sup>3</sup> C—O                  | 1025-1200                   |  |







| Infrared Absorption Frequencies                 |                         |  |  |  |
|-------------------------------------------------|-------------------------|--|--|--|
| Structural unit Frequency, cm <sup>-1</sup> C=O |                         |  |  |  |
| Aldehydes and ketones                           | 1710-1750               |  |  |  |
| Carboxylic acids                                | 1700-1725               |  |  |  |
| Acid anhydrides                                 | 1800-1850 and 1740-1790 |  |  |  |
| Esters                                          | 1730-1750               |  |  |  |
| Amides                                          | 1680-1700               |  |  |  |























| Infrared Absorption Frequencies |                             |  |  |
|---------------------------------|-----------------------------|--|--|
| Structural unit                 | Frequency, cm <sup>-1</sup> |  |  |
| Bending vibrations of alkenes   |                             |  |  |
| RCH <sup>==</sup> CH₂           | 910-990                     |  |  |
| $R_2C = CH_2$                   | 890                         |  |  |
| cis-RCH=CHR'                    | 665-730                     |  |  |
| trans-RCH=CHR'                  | 960-980                     |  |  |
| R <sub>2</sub> C=CHR'           | 790-840                     |  |  |







































