

Crystal-Field Theory

- Crystal field theory describes bonding in transition metal complexes.
- The formation of a complex is a Lewis acid-base reaction.
- Both electrons in the bond come from the ligand and are donated into an empty, hybridized orbital on the metal.
- Charge is donated from the ligand to the metal.
- Assumption in crystal field theory: the interaction between ligand and metal is electrostatic.
- There are differences in the electrostatic interactions depending on the ligand. (Energy Differences)

 The energy gap between them is called Δ, the crystal field splitting energy.

Crystal-Field Theory

- The energy gap is the crystal field splitting energy Δ .
- Ti³⁺ is a d⁻¹ metal ion.
- For Ti³⁺, the gap between energy levels, ∆ is of the order of the wavelength of visible light.
- As the [Ti(H₂O)₆]³⁺ complex absorbs visible light, the electron is promoted to a higher energy level.
- Since there is only one *d* electron there is only one possible absorption line for this molecule.
- Color of a complex depends on the magnitude of Δ which, in turn, depends on the metal and the types of ligands.

field strength incres			
noid da crigar morea	ases.		
itrong-field ligands	The Spectro	abamiaal Cariaa	
NO ₂	The Spectro	chemical Series	
en			
NH ₃			
H ₂ O	$I^{-} CI^{-} F^{-} OH^{-} H_2O < SCN^{-} NH_3 < en < NO_2^{-} < CN^{-} CO$		
ox	WEAKER FIELD	STRONGER FIELD	
OH-	SMALLER Δ		
F" SCN", CI"	LONGER λ	SHORTER A	
Br-			
F" SCN", CI" Br"	SMALLER Δ LONGER λ	LARGER Δ	

QUESTION The complex ions of Zn²⁺ are all colorless. The most likely explanation for this is: A) Zn²⁺ is paramagnetic. B) Zn²⁺ exhibits *d*-orbital splitting in its complexes such that all wavelengths in the visible region are absorbed. C) Since Zn²⁺ is a d¹⁰ ion, it does not absorb visible light even though the *d*-orbital splitting is correct for absorbing visible wavelengths. D) Zn²⁺ is not a transition metal ion.

E) None of these are correct.

Electronic Configurations of Transition Metal Complexes

- •Determining d-orbital energy level diagrams:
 - \bigstar determine oxidation # of the metal
 - ★ determine # of d e⁻'s
 - ★ determine if ligand is weak field or strong field
 - ▲ draw energy level diagram

Magnetism

- Paramagnetic metal complexes have unpaired electrons.
- Diamagnetic metal complexes have paired electrons.
- There are some interesting observations. Consider a *d*⁶ metal ion:
 - $-\,[Co(NH_3)_6]^{3+}$ has no unpaired electrons, but $[CoF_6]^{3+}$ has four unpaired electrons per ion.
- Strong Field (low spin) vs. Weak Field (high spin) provide an explanation.

QUESTION Which of the following is paramagnetic? A) $Zn(H_2O)_6^{2^+}$ B) $Co(NH_3)_6^{3^+}$ (strong field) C) $Cu(CN)_3^{2^-}$ D) $Mn(CN)_6^{2^-}$ (strong field)

Orbital Occupancy for High- and Low- Spin Complexes of <i>d</i> ⁴ Through <i>d</i> ⁷ Metal	High sein; igand ligand of of o o o o o o

QUESTION

How many unpaired electrons are found in the octahedral complex ion $[CoI_6]^{3-?}$ Note: I⁻ is considered to be a weak field ligand.

- 1. one
- 2. two

E) None of these

three
 four

QUESTION

The geometry of a coordination compound with a coordination number of 4 is

A. tetrahedral, in order to minimize repulsions between the ligands

B. octahedral, since there are two different positions possible for each ligand

C. square planar, to allow room for the counterion because the ligands take up so much space

D. linear, since there are two ligands on each side of the transition metal

E. tetrahedral or square planar, but too difficult to predict based on the information given

Some Transition Metal Trace Elements in Humans				
Element	Biomolecule Containing	Function of		
	Element	Biomolecule		
Chromium	Glucose tolerance factor	Glucose utilization		
Manganese	Isocitrate dehydrogenase	Cell respiration		
Iron	Hemoglobin and myoglobin	Oxygen transport		
	Cytochrome c ,	Cell respiration; ATP form.		
	Catalase	Decomposition of H ₂ O ₂		
Cobalt	Cobalamin (vitamin B ₁₂)	Development of red		
	12	blood cells		
Copper	Ceruloplasmin	Hemoglobin synthesis		
[AA lab]	Cytochrome oxidase	Cell respiration; ATP syn.		
Zinc				
	Carboxypeptidase A	Protein digestion		
	Alcohol dehydrogenase	Metabolism of ethanol		
	Carbonic anhydrase	Elimination of CO_2		

NOTE: There is no chelation agent for Mn, nor Ni and Zn							
Metal	Acute	Chronic	Toxic Concentration	Treatment			
Copper	Blue vomitus, GI irritation/ hemorrhage, hemolysis, MODS (ingested); MFF (inhaled)	vineyard sprayer's lung (inhaled); Wilson disease (hepatic and basal ganglia degeneration)	Normal excretion: 25 µg/24 h (urine)	BAL D-Penicillamine Succimer			
Iron	Vomiting, GI hemorrhage, cardiac depression, metabolic acidosis	Hepatic cirrhosis	Nontoxic: < 300 µg/dL Severe: >500 µg/dL	Deferoxamine			
Lead	Nausea, vomiting, encephalopathy (headache, seizures, ataxia, obtundation)	Encephalopathy, anemia, abdominal pain, nephropathy, foot-drop/ wrist-drop	Pediatric: symptoms or [Pb] ≥45 µ/dL (blood); Adult: symptoms or [Pb] ≥70 µ/dL ^[1]	BAL CaNa ₂ EDTA Succimer			
Manganese	MFF (inhaled)	Parkinson-like syndrome, respiratory, neuropsychiatric ^[2]	No clear reference standard	•			
Mercury	Elemental (inhaled): fever, vomiting, diarrhea, ALI; Inorganic salts (ingestion): caustic gastroenteritis	Nausea, metallic taste, gingivo- stomatitis, tremor, neurasthenia, nephrotic syndrome; hypersensitivity (Pink disease)	Background exposure "normal" limits: 10 µg/L (whole blood); 20 µg/L (24-h urine)	BAL Succimer DMPS (Europe)			