Organic Chemistry

Chem 121: Topics

Carbon Bonding Orbital Hybridization/ Molecular Shape / Structures Hydrocarbon Backbones / Functionality / Nomenclature Isomerism: Constitutional, Geometric, Enantiomeric, Diastereomeric Optical Activity Reactions: Oxidation / Reduction / Esterification / Condensation Polymers / Biochemistry

ORGANIC CHEMISTRY

- > The study of carbon-containing compounds.
- Organic compounds contain backbones comprised of chains and/or rings of carbon and hydrogen atoms.
- Commonly used formulas are empirical, molecular, structural (bond-line, condensed and 3-D), which are most commonly used over empirical, molecular formulas.

HYDROCARBONS

- Compounds composed of only carbon and hydrogen atoms (C, H).
- Acyclic (without rings); Cyclic (with rings); Saturated: only carbon-carbon single bonds; Unsaturated: contains one or more carbon-carbon double and/or triple bonds
- ➤ They represent a "backbone" when other "heteroatoms" (O, N, S,) are substituted for H. (The heteroatoms give function to the molecule.)
- Consider the bonding arrangements for (C, H, O, and N).
 Particularly that each carbon has 4 bonds.

Bonding Arrangements

		С		H	0		N		
# of Valence s		4		7		6		5	
Total # of Bond (neutral atom)		4		1		2		3	
Combinations of bonds (neutral atom):									
# of single bond	4	2	7	7	2	0	3	7	0
¢ of double bond	0	7	0	0	0	7	0	7	0
# of trip le bona	0	0	7	0	0	0	0	0	7
Total Bonds	4	4	4	1	2	2	3	3	3
# of Free Pairs electrons	0	0	0	0	2	2	7	7	7

FIDET CE			
Molecula	Condensed Structural Formula	Name	Boiling Point (°C)
CHa	CH4	Methane	()
C ₂ H ₆	CH ₃ CH ₃	Ethane	
C ₃ H ₈	CH ₃ CH ₅ CH ₃	Propane	
C4H10	CH3CH2CH2CH3	Butane	20.5
C5H12	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	36
C6H14	CH3CH2CH2CH2CH2CH3	Hexane	68
C7H16	CH3CH2CH2CH2CH2CH2CH3	Heptane	98
C8H18	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Octane	125
C ₉ H ₂₀	CH ₃ CH ₂ CH ₃	Nonane	151
C10H22	CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2	Decane	174

Exan	nples of A	Alkyl Subsi	tituents
CH ₃ OH methyl alcohol CH ₃ I methyl iodide	CH ₃ CH ₂ NH ₂ ethylamine CH ₃ CH ₂ OH ethyl alcohol	CH ₃ CH ₂ CH ₂ Br propyl bromide CH ₃ CH ₂ CH ₂ NH ₂ propylamine	CH ₃ CH ₂ CH ₂ CH ₂ Cl butyl chloride CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH butyl alcohol

How many carbon atoms are present per molecule in the compound 3-methyl-4-ethyloctane? How many of those are present on the side chains (branches) only?

A. 11 total; 3 on branches

- B. 15 total; 7 on branches
- C. 12 total; 3 on branches D. 15 total; 2 on branches

- suffix -ene replacing the -ane in alkanes.
- The location of the double bond is indicated by a number.
- Geometrical (cis-trans) isomers are possible since there is no rotation about a C=C π bond.

How many hydrogen atoms would be part of one molecule of cyclopentene?

A. 4

- B. 5
- C. 8 D. 10

Unsaturated Hydrocarbons Alkynes

Alkynes are hydrocarbons with one or more C=C bond. The triple bond in alkynes have one σ and two π bonds between two C atoms.

- ► Ethyne (acetylene) is a reactive alkyne: HC=CH.
- When acetylene is burned in the presence of oxygen (oxyacetylene torch) the temperature is about 3200 K.
- Alkynes are named in the same way as alkenes with the suffix -yne replacing the -ene for alkenes.

Cor	nmon Functional	Groups
	Key Oxygen & Nitrogen Functions	

Alcohol	нн н.с.с.о.н н.н	сн,сн,он
Ether	н - 60-н н - 60-н н - 80-н	CH,OCH,
Aldebyde	о н,с-сн	СН,СНО
Ketone	H ₃ C-L _{CH3}	CH,COCH,
Carboxylic Acid	_{н,с} L _{он}	сн,соон
Ester	HCLOCH	CH,CO,CH,
Amide	н,с Сн,	CH,CONHCH,
Amine	H ₂ C-N-CH,	CHARCH

molecule.

QUESTION Identify the functional groups in the following molecule. H₂N-CH-COH CH₂OH A) Alcohol, amide, carboxylic acid B) Aldehyde, amine, ester

- --ol in place of the -ane suffix. Example: ethane becomes ethanol.
- Since the -O-H bond is polar, similar to H-O-H, alcohols are quite soluble in water.
- CH₃OH, methanol, is used as a gasoline additive and a fuel. CH₃CH₂OH, ethanol is a legal recreational drug that can be dangerous.

Functional Groups: Ethers (R-O-R) Like alcohols ethers have an oxygen atom with two single bonds.

- But instead of a hydrogen atom being bonded to the oxygen as in alcohols, ethers have oxygen bonded to two carbons (R-).
- Ethers are commonly used as solvents.
- Certain ethers are biologically active. Some are used as anesthetics.

Compounds with a Carbonyl Group: Carboxylic Acids

- Carboxylic acids contain a carbonyl group with an -OH attached.
- The "carboxylate" functional group is -COO : O
- Carboxylic acids are weak acids.
- Carboxylic acids are found in spinach, vinegar, cleaners, vitamin C, aspirin, and citrus fruits.

Rí

OH

 Carboxylic acids are also used to produce polymers used in fibers, paints, and films.

Name an oxidation product of 2-butanol.

- A. Butanoic acid
- B. 2-butanal
- C. Butanone
- D. Butanal

QUESTION

Which of the following possible starting materials would be best used to prepare benzoic acid in one step using an oxidation reaction?

- A. Benzaldehyde
- B. 2-phenylethylalcohol
- C. Benzene
- D. Phenol

The compound diethyl amine that can be used as a curing agent in some epoxy materials would have how many hydrogen atoms per molecule?

A. 7

B. 10

C. 11

D. 12

Isomerism

- Molecules which have the same molecular formula, but differ in the arrangement of their atoms, are called isomers.
- Constitutional (or structural) isomers differ in their bonding sequence.
- Stereoisomers differ only in the arrangement of the atoms in space.

QUESTION

How many structural / constitutional alcohol isomers have the molecular formula $C_4 H_{10} O$?

- A) two
- B) three
- C) four
- D) five

QUESTION

The carbon skeleton shown at the bottom right accounts for 9 carbon atoms. How many other isomers of $C_{10}H_{22}$ that have 7 carbons in their **longest continuous chain** can be generated by adding a single carbon to various positions on this skeleton?

Stereoisomerism

- Enantiomers are chiral: i.e. They are nonsuperimposable mirror images.
- Enantiomers are "optical isomers." eg. (+) and (-) carvone
- Most physical and chemical properties of enantiomers are identical.
- Therefore, enantiomers are very difficult to separate eg. Tartaric acid... ask Louis Pasteur.

 Enantiomers can have very different physiological effects: eg. (+) and (-) carvone

Physical Properties of the Stereoisomers of Tartaric Acid Melting Solubility, point, °C $[\alpha]_{5}^{5}$ °C $[\beta]_{2}$ Ou g H ₂ O at 15 A. (28.38)-(+)-Tartaric acid 170 +11.98° 139 (28.35)-(-)-Tartaric acid 170 -11.98° 139 (28.35)-Tartaric acid 140 0° 125 D. (\pm)-Tartaric acid 206 0° 139 A. & B. = enantiomers A. & C. and B. & C. = diastereomers A. = naturally occurring form found in wing		Pressure detents to 10 press production of the set of	Louis Pas	steur's lab i	notebook j	page (1848)
Melting point, *C Solubility, $[\alpha]_{2}^{25 \cdot C}$ Solubility, $g/100 g H_{2}O at 15$ A. $(2R,3R)$ -(+)-Tartaric acid 170 +11,98° 139 B. $(2S,3S)$ -(-)-Tartaric acid 170 -11,98° 139 C. $(2R,3S)$ -(-)-Tartaric acid 140 0° 125 D. (±)-Tartaric acid 206 0° 139 A. $B. = enantiomers$ A. & B. = enantiomers A. & C. and B. & C. = diastereomers A = naturally occuring form found in wing	Sal The	P	hysical Propert	ties of the Stere	oisomers of Ta	rtaric Acid
A. $(2R,3R)$ -(+)-Tartaric acid 170 +11.98° 139 B. $(2S,3S)$ -(-)-Tartaric acid 170 -11.98° 139 C. $(2R,3S)$ -(-)-Tartaric acid 170 -11.98° 139 C. $(2R,3S)$ -(artaric acid 170 -11.98° 139 C. $(2R,3S)$ -(artaric acid 140 $0°$ 125 D. (±)-Tartaric acid 206 $0°$ 139 A. & B. = enantiomers A. & C. and B. & C. = diastereomers A - naturally occuring form found in wing	Saray Sarah I a Satan Ingana Satan Ingana Satan Ingana Satan Ingana	er, in her of Kryle Lynds Ang In her of the second second in the second second second second second second second second second second		Melting point, °C	$[\alpha]_D^{25 \ \circ C}$	Solubility, g/100 g H ₂ O at 15 °C
B. $(2S,3S)$ - $(-)$ -Tartaric acid 170 -11.98° 139 C. $(2R,3S)$ -Tartaric acid 140 0° 125 D. (\pm) -Tartaric acid 206 0° 139 A. & B. = enantiomers A. & C. and B. & C. = diastereomers A = naturally occuring form found in wing	А.	(2R, 3R) - (+) - 7	Fartaric acid	170	$+11.98^{\circ}$	139
C. $(2R,35)$ -Tartaric acid 140 0° 125 (\pm)-Tartaric acid 206 0° 139 A. & B. = enantiomers A. & C. and B. & C. = diastereomers A. = naturally occuring form found in wing	В.	(25,35)-(-)-1	artaric acid	170	-11.98°	139
D. (\pm) -Tartaric acid 206 0° 139 A. & B. = enantiomers A. & C. and B. & C. = diastereomers A. = naturally occuring form found in wing	С.	(2R,3S)-Tarta	ric acid	140	0°	125
A. & B. = enantiomers A. & C. and B. & C. = diastereomers A. = naturally occuring form found in wine	D.	(±)-Tartaric a	icid	206	0°	139
			A A. & C. a A. = natu	. & B. = en and B. & C urally occur	antiomers = diaster ing form fo	eomers bund in wine

The synthetic polymer polyethylene is made from the monomer ethene or also referred to as ethylene. The polymer has no carbon branching. Polypropylene is made from the monomer propene. As propene monomers are added together, a chain with methyl branches can form. In such a chain how many carbon atoms would be between each branch. Note: these carbon atom(s) themselves would have no branches.

- A. 1 B. 2 C. 3
- D. none

	Plastic recycling number	Acronym and name of polymer	Original	Recycle
	1	PET Poly(ethylene terephthalate)	Beverage bottles, food and cleanser bottles	Carpet fibers, fiberfill insulation, nonfood containers
DECVCIES	2	HDPE High-density polyethylene	Milk, juice, water bottles, grocery bags (crinkly)	Oil and soap bottles, trash cans, grocery bags, pipes
PAER & CONTAINERS TOGETHER: PLASE DO NORMACIÓN ACETTO NO PARTICIDAS DA CATINOTOMI ACETTO Normania da Catina da Catin	3	PVC (or V) Polyvinyl chloride	Food and water bottles, food wraps, blister packs, construction materials	Drainage pipes, flooring tile, traffic cones
Marane Thorage A Strategy A Strat	4	LDPE Low-density polyethylene	Flexible bags for trash, bread, milk, groceries; flexible wraps and containers	Bags for trash, groceries; irrigation pipes; oil bottles
	5	PP Polypropylene	Handles, bottle caps, lids, wraps, bottles	Auto parts, fibers, pails, refuse containers
	6	PS Polystyrene	Foam cups, packaging: cutlery; furniture; appliances	Insulation, toys, trays, packaging "peanuts"
	7	Other	Various	Plastic "timber," posts, fencing, pallate